Neuro-fuzzy Modeling of Temperature- and Strain-rate-dependent Behavior of NiTi Shape Memory Alloys for Seismic Applications
نویسندگان
چکیده
This paper proposes a neuro-fuzzy model of superelastic NiTi shape memory alloy (SMA) wires for use in seismic applications. First, in order to collect experimental data, uniaxial tensile tests are conducted on superelastic wires in the temperature range of 0 oC to 40 oC, and at the loading frequencies of 0.05 Hz to 2 Hz with five different strain amplitudes. Then, an adaptive neuro-fuzzy inference system (ANFIS) is employed to construct a model of SMAs based on experimental input-output data pairs. The fuzzy model employs strain, strain-rate, and temperature as input variables, and provides stress as single output. Gaussian membership functions (MFs) are assigned to each input variables. A total of twelve if-then rules are used to map these MFs to output characteristic. The model obtained from ANFIS training is validated by using an experimental data set that is not used during training. The developed model is capable of simulating behavior of superelastic SMAs at various temperatures and at various loading rates while it remains simple enough to realize numerical simulations. These features of the model make it attractive for numerical studies on vibration control of structures.
منابع مشابه
TRANSFORMATION BEHAVIOR OF NiTi SHAPE MEMORY ALLOYS TREATED BY THERMOMECHANICAL PROCESSING USING DSC
Abstract: In the present study the effect of thermomechanical treatment (cold work and annealing) on the transformation behavior of NiTi shape memory alloys was studied. Differential scanning calorimetry was used to determine transformation temperature and its relation to precipitates and defects. Three alloys including Ti-50.3at.% Ni, Ti-50.5at.% Ni (reclamated orthodontic wires) and 50.6at...
متن کاملEffect of Electrical Current on Nitinol Medical Staples Shape Memory
Medical staples are one of the nitinol shape memory alloys applications which their pedicles have to be bent for suitable function with an appropriate angle at a specified temperature .It is achievable by shape memory effect. For this purpose, samples of nitinol super elastic alloys were bent in a steel mold with different angles & formed orthopedic staples. Then shape memory effect was induced...
متن کاملEffect of Electrical Current on Nitinol Medical Staples Shape Memory
Medical staples are one of the nitinol shape memory alloys applications which their pedicles have to be bent for suitable function with an appropriate angle at a specified temperature .It is achievable by shape memory effect. For this purpose, samples of nitinol super elastic alloys were bent in a steel mold with different angles & formed orthopedic staples. Then shape memory effect was induced...
متن کاملEffect of the Primary Microstructures during Training Producers on TWSME in NiTi Alloys (TECHNICAL NOTE)
The influence of the martensitic, martensitic+austenitic and austenitic structures in bending training on two-way shape memory effect (TWSME) in Ni-50.8 at %Ti and Ni-49.9 at %Ti alloys was studied. In addition of the primary structure, the effect of pre-strain, plastic strain, training cycle and training temperature on the TWSME was investigated. The prepared samples were trained in martensiti...
متن کاملApplication of Shape Memory Alloys in Seismic Isolation: A Review
In the last two decades, there has been an increasing interest in structural engineering control methods. Shape memory alloys and seismic isolation systems are examples of passive control systems that use of any one alone, effectively improve the seismic performance of the structure. Characteristics such as large strain range without any residual deformation, high damping capacity, excellent re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015